
rtmk User and Developer Documentation
A free real-time microkernel

For version 0.2, 4 February 2002

Johan Rydberg, jrydberg@rtmk.org

Copyright c© 1999, 2000, 2001, 2002 Johan Rydberg.
All Rights Reserved.

i

Table of Contents

1 Introduction . 1
1.1 Basic kernel functionality . 1

2 Kernel Interface . 2
2.1 Tasks - The execution environment . 2

2.1.1 The running task . 2
2.1.2 Creating tasks . 2
2.1.3 Task information . 3
2.1.4 Task’s special ports . 3

2.2 Threads - the basic execution unit. 4
2.2.1 The executing thread . 4
2.2.2 Controling threads . 4
2.2.3 Reply ports . 4
2.2.4 Special ports . 5
2.2.5 Thread states . 5
2.2.6 Setting priority . 6

2.3 Ports - The communication channel . 6
2.3.1 Allocating ports . 6
2.3.2 Destroying ports . 7
2.3.3 Migration control . 7
2.3.4 Sending and receiving messages 7

2.4 Virtual memory management. 8
2.4.1 Locking memory . 8
2.4.2 Mapping a memory object . 8
2.4.3 Copying memory between tasks 8

2.5 Exception handling . 9
2.6 Kernel error codes . 9

3 Message-based communicaton 11
3.1 Basic concepts . 11

4 Intel 80386 Dependent Features 12
4.1 Application Binary Interface Related . 12
4.2 Machine-dependent thread states . 12
4.3 Booting the kernel . 12

5 Function Index . 13

Chapter 1: Introduction 1

1 Introduction

‘rtmk’ is a communication-oriented operating system kernel providing:
• multiple tasks, each with a large, paged and protected virtual memory space,
• multiple threads of execution within each task, with a flexible scheduling facility,
• flexible sharing of memory between tasks, and
• message-based interprocess communication.

1.1 Basic kernel functionality

The ‘rtmk’ microkernel supports the following basic abstractions:
• A task is an execution environment and is the basic unit of resource allocation. A task

includes a paged virtual address space and protected access to system resourecs.
• A thread is the basic unit of execution. It consists of all processor state (e.g., hardware

registers) necessary for independent execution. A thread executes in the virtual memory
and port rights context of a single task. The conventional notion of a process is, in
rtmk, represented by a task with a single thread of control.

• A port is a simple communication channel – implemented as a message queue managed
and protected by the kernel.

• A message is a typed collection of data objects used in communications between
threads. A message can be of any size and contain inline data, pointers to data or
capabilities for ports.

Message-passing is the primary mean of communication among tasks. The rtmk kernel
functions can be divided into the following groups:
• basic message primitives and support facilities,
• port management facilities,
• task and thread creation and management facilities, and
• virtual memory management facilities.

Chapter 2: Kernel Interface 2

2 Kernel Interface

2.1 Tasks - The execution environment

A task is an execution environment and is the basic unit of resource allocation. A task
includes a paged virtual address space and protected access to system resources.

The size of the virtual address space is architecture dependent. The Intel 80386 port of
‘rtmk’ provides a 3 GB address space to the user. The kernel uses the first 1 GB of the
address space, this memory is not visible to the user application.

2.1.1 The running task

A thread can always get the name of the send right of the task that it is currently
executing in, by simply calling ‘task_self’.

Task functionrtmk_port task self (void)
Return send rights to the task that the current executing thread is running in. Ref-
erences to the task is not increased by this function, so there is no need to deallocate
after usage.

2.1.2 Creating tasks

When creating a new task the user application can choose to fork of the parent tasks
address space or create a new, empty, address space of the child task. A newly created task
is NOT suspended.

Task functionkern_return_t task create (rtmk_port_t task, bool fork p,
rtmk_port_t *child taskp)

Creates a new task, where task will act as the parent task. If fork p is true, the
address space of task will be forked, taking region inheritance flags in account. Send
right to the new task is returned in child taskp. The kernel always hold receive right
for a task.

Task functionkern_return_t task terminate (rtmk_port_t task)
Try to terminate task. When this function returns, all execution of threads in task
have been stopped and the task have been terminated. If task is the current running
task (i.e. we are terminating our self), this function will never return.

Task functionkern_return_t task suspend (rtmk_port_t task)
Suspend execution of all threads that belong to task, until they are resumed.

Task functionkern_return_t task resume (rtmk_port_t task)
Resume execution of all threads (except those who is individually suspended) that
belong to task.

Chapter 2: Kernel Interface 3

2.1.3 Task information

An application with a send right to a task can always retrieve information about that
task. ‘thread_info’ returns a structure containing basic information about the task and
the number of resources it is holding.

Task functionkern_return_t task threads (rtmk_port_t task, rtmk_port_t
*threadsp, int *countp)

This function returns an array, threadsp, with *countp entries containing send rights
to all threads in task. The array is ‘out-of-line’ memory, so it has to be deallocated
using vm_deallocate after it has been used.

Task functionkern_return_t task info (rtmk_port_t task, struct task_info
*infop, int *countp)

Retrieve information about task and store it in *infop. On call, *countp must hold
the value of ‘TASK_INFO_COUNT’.

Task functionkern_return_t task names (rtmk_port_t task,
rtmk_port_name_t *rightsp, int *rights countp, rtmk_port_type_t *types,
int *types countp)

Retrieve two arrays that hold information about names and types of all rights that
task holds. Arrays must be deallocated after they have been used.

2.1.4 Task’s special ports

Each task controls a set of special ports that are used for several purposes. Each slot in
the port set contains a send right to a port that can be retrieved by a someone that holds
send rights to the task. Available slots:

TASK_SPECIAL_PORT_KERNEL
Represents task to the outside world. This is the port that is returned by
‘task_self’.

TASK_SPECIAL_PORT_BOOTSTRAP
Slot can be used to identify ‘bootstrap port’ that is assigned to the particular
task. The kernel does not use the bootstrap port internally, but applications
can use it when forking of children.

TASK_SPECIAL_PORT_EXCEPTION
Exception messages for task are sent to this port. See Section 2.5 [Exceptions],
page 9.

There are some slots reserved for the future, and some that are free to be used by
applications.

Task functionkern_return_t task special port set (rtmk_port_t task, int
slot, rtmk_port_t port)

Set control port in task to port at slot in control port array. (??? write something
else here)

Chapter 2: Kernel Interface 4

Task functionkern_return_t task special port get (rtmk_port_t task, int
slot, rtmk_port_t *portp)

Get send rights to port slot in task’s control port set. Right is returned in portp.

2.2 Threads - the basic execution unit.

A thread is the basic unit of execution. It consists of all processor state (e.g., hardware
registers) necessary for independent execution, and scheduling information.

At any given time a thread executes in the virtual memory and port rights context of
ONE single task. But threads can migrate to other tasks, using full migrated RPC.

The conventional notion of a process is, in ‘rtmk’, represented by a task with a single
thread of control.

2.2.1 The executing thread

A thread can always get the name of the send right of itself, the thread that it is currently
executing, by simply calling ‘thread_self’.

Thread functionrtmk_port_t thread self (void)
Return send rights to the current executing thread.

2.2.2 Controling threads

When a thread is created, it is assigned to a task. This is the task that the thread will
begin to execute in, it’s so called home task.

Thread functionkern_return_t thread create (rtmk_port_t task,
rtmk_port_t *threadp)

Create thread that will execute in task. New thread is suspended.

Thread functionkern_return_t thread terminate (rtmk_port_t thread)
Terminate thread.

Thread functionkern_return_t thread suspend (rtmk_port_t thread)
Suspend execution of thread.

Thread functionkern_return_t thread resume (rtmk_port_t thread)
Resume execution of thread if suspend count drops to zero.

2.2.3 Reply ports

To perform a RPC the thread needs a reply port to receive the reply on. To allocate
this port using port_allocate would cause to much overhead. The thread_reply_port
system call return right name to a newly allocated port, that can be used for receiving
replies.

Thread functionrtmk_port_t thread reply port (void)
Allocate a port that can be used a receive port of replies.

Chapter 2: Kernel Interface 5

2.2.4 Special ports

Each thread, just like tasks, controls a set of special ports. Each slot in the port set
contains a send right to a port that can be retrieved by a someone that holds send rights
to the task. Available slots:

THREAD_SPECIAL_PORT_KERNEL
Represents thread to the outside world. This is the port that is returned by
‘thread_self’.

THREAD_SPECIAL_PORT_EXCEPTION
Exception messages for task are sent to this port. See Section 2.5 [Exceptions],
page 9.

There are some slots reserved for the future, and some that are free to be used by
applications.

Thread functionkern_return_t thread special port set (rtmk_port_t
thread, int slot, rtmk_port_t port)

Set control port in thread to port at slot in control port array. (??? write something
else here)

Thread functionkern_return_t thread special port get (rtmk_port_t
thread, int slot, rtmk_port_t *portp)

Get send rights to port slot in thread’s control port set. Right is returned in portp.

2.2.5 Thread states

The thread_state_get and thread_state_set function are used to retrieve or set
information about a particular thread. The flavor argument specifies what state/status we
want. Available flavors:

THREAD_STATE_FLAVOR_TIMING
Timing information about thread. The ‘thread_state_timing’ structure holds
both user- and system-timing. *countp should be THREAD_STATE_FLAVOR_
TIMING_COUNT. This flavor is read only.

Thread functionkern_return_t thread state get (rtmk_port_t thread, int
flavor, void *state, int *countp)

Get state specified with flavor from thread. State is returned in state. *countp should
be the size of the state. See above.

Thread functionkern_return_t thread state set (rtmk_port_t thread, int
flavor, void *state, int count)

Set state specified with flavor from thread. state holds the state. count should be
the size of the state. See above.

Chapter 2: Kernel Interface 6

2.2.6 Setting priority

The rtmk microkernel provides three different scheduling policies and a 0-127 priority
range per policy. These are set per-thread.

THREAD_POLICY_TIMESHARE
The default scheduling policy. The threads are scheduled using a credit-based
time sharing algorithm.

THREAD_POLICY_RR
Threads are scheduled in a round-robin maner.

THREAD_POLICY_FIFO
THREAD_POLICY_FCFS

A first come, first served scheduling algorithm. Threads are only preempted by
higher-priority threads.

Thread functionkern_return_t thread priority set (rtmk_port_t thread,
int policy, int priority)

Set scheduling policy and priority for thread to policy and priority. If policy is an
unknown scheduling policy, or if priority is out of range, KERN_INVALID_ARGUMENT is
returned.

2.3 Ports - The communication channel

A port is a simple communication channel – implemented as a message queue managed
and protected by the kernel.

A port set is a collection of ports that have a single protected message queue, which
enables M:N communication with a single server.

2.3.1 Allocating ports

Ports and port sets are allocated with the same functions.

Ports functionkern_return_t port allocate (rtmk_port_t task,
rtmk_port_right_t flavor, rtmk_port_t *portp)

Allocate receive right to a new port in task’s protected name space. flavor specifies
what type of port right we should allocate, either RTMK_PORT_RIGHT_RECEIVE or
RTMK_PORT_RIGHT_PORT_SET.

Ports functionkern_return_t port allocate named (rtmk_port_t task,
rtmk_port_right_t flavor, rtmk_port_t port name)

Same things as ‘port_allocate’ except that we don’t let the kernel choose our right
name. Instead we insist on the name port name.

Ports functionkern_return_t port move member (rtmk_port_t task,
rtmk_port_t member, rtmk_port_t pset)

Insert member into port set specified by pset. If pset is NULL, member is removed
from any port set it was a member of.

Chapter 2: Kernel Interface 7

2.3.2 Destroying ports

Ports functionkern_return_t port deallocate (rtmk_port_t task,
rtmk_port_t port name)

Deallocate a reference to port name. If reference count drops to zero, the right is
removed from task’s protected name space.

Ports functionkern_return_t port destroy (rtmk_port_t task, rtmk_port_t
port name)

Destroy port name. task must hold receive right to it, which can be either a port or
a port set. After this, the port is considered dead and no more messages can be sent
to it.

2.3.3 Migration control

It is possible to forbid and permit threads from migrating into the targets context.
Threads that tries to migrate through a migrate inhibited target will block until migration
is re-enabled.

Ports functionkern_return_t port inhibit (rtmk_port_t task, rtmk_port_t
port name)

Inhibit migration to port or port set specified by port name.

Ports functionkern_return_t port exhibit (rtmk_port_t task, rtmk_port_t
port name)

Enable threads to migrate into task’s context through port name.

2.3.4 Sending and receiving messages

Ports functionkern_return_t msg send (struct rtmk_msg_header *msgh,
rtmk_msg_timeout_t timeout)

Send message to msgh->msgh_remote_port. msgh is pointer to typed data. If timeout
is zero, we can block forever.

Ports functionkern_return_t msg receive (struct rtmk_msg_header *msgh,
rtmk_msg_timeout_t timeout)

Receive message from local port specified in message header msgh. If timeout is zero,
we can block forever.

Ports functionkern_return_t msg rpc (struct rtmk_msg_header *msgh,
rtmk_msg_size_t recv size, rtmk_msg_timeout_t timeout)

Perform a full RPC from information in msgh. recv size is length of receive buffer.
If timeout is zero, we can block forever.

Ports functionkern_return_t msg migrate (struct rtmk_msg_header
*msgh, rtmk_msg_size_t recv size)

Perform a full RPC with thread migration (the fast path). recv size is length of
receive buffer.

Chapter 2: Kernel Interface 8

2.4 Virtual memory management

VM functionkern_return_t vm allocate (rtmk_port_t task, vm_size_t size,
vm_offset_t *offsetp, int anywhere p)

Allocate anonymous region of size bytes in task’s address space. If anywhere p is
true the kernel chooses offset into address space, othersize *offsetp specifies location.
Offset is returned in offsetp.

VM functionkern_return_t vm deallocate (rtmk_port_t task, vm_offset_t
offset, vm_size_t size)

Deallocate region [offset, offset+size) of task’s address space.

VM functionkern_return_t vm protect (rtmk_port_t task, vm_offset_t
offset, vm_size_t size, vm_prot_t protection)

Lower protection level of region [offset, offset+size) to protection. If protection is
higher than maximum protection, KERN_INVALID_ARGUMENT is returned.

2.4.1 Locking memory

For some applications it is neccesarry, to ensure real-time, to lock certain regions of the
address space in memory. Locked memory will never be swaped out.

VM functionkern_return_t vm wire (rtmk_port_t task, vm_offset_t offset,
vm_size_t size, int wired p)

Lock region [offset, offset+size) into memory if wired p is true. If user tries to lock
a region into memory, and some pages were swaped-out, those are brought in before
this function returns.

2.4.2 Mapping a memory object

VM functionkern_return_t vm map (rtmk_port_t task, rtmk_port_t
memory object, vm_offset_t *offsetp, vm_size_t size, int anywhere p,
vm_prot_t prot, vm_inherit_t inherit)

Map size bytes of memory object into task’s address space. Kernel chooses offset
into address space if anywhere p is true, othersize *offsetp specifies location. Offset
is returned in offsetp.

2.4.3 Copying memory between tasks

Sometime it is neccessary to copy memory between different address spaces. This can
be done by three functions; ‘vm_write’, ‘vm_read’ and ‘vm_copy’.

??? wip!

Chapter 2: Kernel Interface 9

2.5 Exception handling

When a thread causes and exception, due to for example a divide by zero, an exception
message is send to the threads exception port. If the thread do not have an assigned port,
it send it to the tasks port, of which the thread belongs to.

The message is in the form of a RPC, defined as following:

(define-method exception_raise (returns REMS_MSG_TYPE_INTEGER32)
(arguments (out exc_port RTMK_MSG_TYPE_COPY_SEND)

(out thread RTMK_MSG_TYPE_COPY_SEND)
(out task RTMK_MSG_TYPE_COPY_SEND)
(out exception RTMK_MSG_TYPE_INTEGER32)
(out code RTMK_MSG_TYPE_INTEGER32)
(out subcode RTMK_MSG_TYPE_INTEGER32)
(out state RTMK_MSG_TYPE_INTEGER8[]))

)

exc port is the exception port that the message is sent to. thread is the thread that
caused the exception, and the thread belongs to task. exception tells us what type of
exception threads raised. The value of code and subcode is dependent on type of exception.
Exception types:

EXCEPTION_BAD_ACCESS
Could not access memory. code contains ‘kern_return_t’ describing error.
code contains bad memory address.

EXCEPTION_BAD_INSN
Instruction failed. code contains address of bad instruction.

EXCEPTION_ARITHMETIC
Arithmetic error. Exact nature of exception is in code.

EXCEPTION_SOFTWARE
Exception caused by software. The value of code and subcode is dependent on
architecture.

EXCEPTION_BREAKPOINT
Thread caused an breakpoint. The value of code and subcode is dependent on
architecture. (??? is this correct?)

2.6 Kernel error codes

All kernel functions that returns a value of the kern_return_t type uses a set of standard
error codes, that is listed here:

KERN_SUCCESS
No error.

KERN_INVALID_ADDRESS
Address specifed was not valid.

Chapter 2: Kernel Interface 10

KERN_NO_SPACE
No space in the virtual address space.

KERN_INVALID_ARGUMENT
User passed an invalid argument to the kernel.

KERN_FAILURE
General failure. Kernel can not specify what went wrong.

KERN_RESOURCE_SHORTAGE
The kernel ran out of resources while trying to perform the action. Normally
this means that there no more memory, and the page-out daemon does not
work as it should.

KERN_NOT_RECEIVER
The task does not have receive rights for a specified port.

KERN_NO_ACCESS
The task have no access to specified resource.

KERN_NOT_IN_SET
Port is not a member of the specified port set.

KERN_NAME_EXISTS
The specified right name already exist.

KERN_RIGHT_EXISTS
The specified right already existed.

KERN_ABORTED
The system call was aborted.

KERN_INVALID_NAME
The name that was specifed was invalid.

KERN_INVALID_TASK
The task that was specifed was invalid.

KERN_INVALID_HOST
The host that was specifed was invalid.

KERN_INVALID_RIGHT
The right that was specified was invalid.

KERN_INVALID_VALUE
The value was invalid.

Chapter 3: Message-based communicaton 11

3 Message-based communicaton

In rtmk, IPC is the central and most import kernel component. Instead of the operating
system supporting IPC mechanisms, rtmk provides an IPC facility that supports mich of
the operating system. There are several important goals in the design of rtmk IPC;
• Message passing must be the fundamental communcation mechanism.
• The amount of data in a single message may range from a few bytes to an entire address

space. The kernel should enable large transfers without unneccesarry data copying.
• The kernel should provide secure communications and allow only authorized threads

to send and receive messages.
• Communication and memory management are tightly coupled. The IPC subsystem

uses the copy-on-write mechanism of the memory subsystem to effeciently transfer
large amounts of data.

• The IPC mechanism should be suitable for applications based on the client-server
model.

• The subsystem should be highly optimized and should create as little overhead as
possible.

3.1 Basic concepts

The rtmk microkernel supplys two fundamental IPC abstractions; messages and ports.
A message is a collection of typed data. A port is a protected queue of messages. A message
can be send only to a port, not to a task or a thread. rtmk associates send rights and receive
rights with each port. These rights are owned by tasks. A send right allow a task to send
messages to the port; a receive right allows it to receive mesages sent to the port. Several
tasks may own send rights to a single port, but only one task holds the receive rights. Thus
a port allows many-to-one communication.

Each port has a reference count that monitors the number of rights to it. Each such
right (a.k.a. capability) represent one name of that port. The names are integer, and the
name space is local to each task. Thus two tasks may have different names for the same
port. Conversely, the same port name may refer to different ports in different tasks.

Ports also represent kernel object. Hence each object, such as a task, thread, or host,
is represented by a port. Rights to these ports represent object references and allow the
holder to perform oprtations on that object. The kernel holds the receive rights to such
ports.

??? WIP

Chapter 4: Intel 80386 Dependent Features 12

4 Intel 80386 Dependent Features

The i386 version of ‘rtmk’ supports the 32-bit Intel architecture. Sometime in the future
support for the 64-bit architecture will be added.

4.1 Application Binary Interface Related

The SVR4/i386 ABI (pages 3-31, 3-32) says that when the entry point runs, most reg-
isters’ values are unspecified, except for:

%edx Contains a function pointer to be registered with ‘atexit’. This is how the
dynamic linker arranges to have DT FINI functions called for shared libraries
that have been loaded before this code runs.

%esp The stack contains the arguments and environment:

0(%esp) argc
4(%esp) argv[0]
...
(4*argc)(%esp) NULL
(4*(argc+1))(%esp) envp[0]
...

NULL

4.2 Machine-dependent thread states

Intel 80386 depdendent thread state flavors:

THREAD_STATE_FLAVOR_I386_CPU
The executing context (i.e., hardware registers) of the thread. The ‘thread_state_i386_cpu’
structure holds execution state. *countp should be THREAD_STATE_FLAVOR_
I386_CPU_COUNT. To set or read this state, the thread must be suspended.

THREAD_STATE_FLAVOR_I386_LDT
On the Intel 80386 architecture each thread have a LDT entry available for
custom use. The ‘thread_state_i386_ldt’ structure holds LDT state. The
segment number is 0x17.

4.3 Booting the kernel

The rtmk kernel uses the GNU GRUB bootloader to load the microkernel and the
operating system kernel. Example of GRUB configuration file:

title rtmk + operating system kernel
root (hd0,1)
kernel /boot/rtmk
module /boot/os-kernel --single-user --root=hd0a

You can find GNU GRUB at http://www.gnu.org/software/grub/grub.html.

Chapter 5: Function Index 13

5 Function Index

M
msg_migrate . 7

msg_receive . 7

msg_rpc . 7

msg_send . 7

P
port_allocate . 6

port_allocate_named . 6

port_deallocate . 7

port_destroy . 7

port_exhibit . 7

port_inhibit . 7

port_move_member . 6

T
task_create . 2

task_info. 3

task_names . 3

task_resume . 2

task_self. 2

task_special_port_get . 4

task_special_port_set . 3

task_suspend . 2

task_terminate . 2

task_threads . 3

thread_create . 4

thread_priority_set . 6

thread_reply_port . 4

thread_resume . 4

thread_self . 4

thread_special_port_get . 5

thread_special_port_set . 5

thread_state_get . 5

thread_state_set . 5

thread_suspend . 4

thread_terminate . 4

V
vm_allocate . 8

vm_deallocate . 8

vm_map . 8

vm_protect . 8

vm_wire . 8

